Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(7)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35891436

RESUMO

Chicken anemia virus (CAV) causes severe clinical and sub-clinical infection in poultry globally and thus leads to economic losses. The drawbacks of the commercially available vaccines against CAV disease signal the need for a novel, safe, and effective vaccine design. In this study, a multiepitope vaccine (MEV) consisting of T-cell and B-cell epitopes from CAV viral proteins (VP1 and VP2) was computationally constructed with the help of linkers and adjuvant. The 3D model of the MEV construct was refined and validated by different online bioinformatics tools. Molecular docking showed stable interaction of the MEV construct with TLR3, and this was confirmed by Molecular Dynamics Simulation. Codon optimization and in silico cloning of the vaccine in pET-28a (+) vector also showed its potential expression in the E. coli K12 system. The immune simulation also indicated the ability of this vaccine to induce an effective immune response against this virus. Although the vaccine in this study was computationally constructed and still requires further in vivo study to confirm its effectiveness, this study marks a very important step towards designing a potential vaccine against CAV disease.


Assuntos
Vírus da Anemia da Galinha , Vacinas Virais , Vírus da Anemia da Galinha/genética , Biologia Computacional , Epitopos de Linfócito B/genética , Epitopos de Linfócito T/genética , Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas
2.
Pathogens ; 10(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34451385

RESUMO

Mycoplasma genitalium infection is a sexually transmitted infection that causes urethritis, cervicitis, and pelvic inflammatory disease (PID) in men and women. The global rise in antimicrobial resistance against recommended antibiotics for the treatment of M. genitalium infection has triggered the need to explore novel drug targets against this pathogen. The application of a bioinformatics approach through subtractive genomics has proven highly instrumental in predicting novel therapeutic targets against a pathogen. This study aimed to identify essential and non-homologous proteins with unique metabolic pathways in the pathogen that could serve as novel drug targets. Based on this, a manual comparison of the metabolic pathways of M. genitalium and the human host was done, generating nine pathogen-specific metabolic pathways. Additionally, the analysis of the whole proteome of M. genitalium using different bioinformatics databases generated 21 essential, non-homologous, and cytoplasmic proteins involved in nine pathogen-specific metabolic pathways. The further screening of these 21 cytoplasmic proteins in the DrugBank database generated 13 druggable proteins, which showed similarity with FDA-approved and experimental small-molecule drugs. A total of seven proteins that are involved in seven different pathogen-specific metabolic pathways were finally selected as novel putative drug targets after further analysis. Therefore, these proposed drug targets could aid in the design of potent drugs that may inhibit the functionality of these pathogen-specific metabolic pathways and, as such, lead to the eradication of this pathogen.

3.
Acta Trop ; 205: 105417, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32105666

RESUMO

Poultry industry has been very instrumental in curtailing malnutrition and poverty and as such contributing to economic growth. However, production loss in poultry industry due to parasitic disease such as coccidiosis has become a global challenge. Chicken coccidiosis is an enteric disease that is associated with morbidity and mortality. The control of this parasite through anticoccidial live vaccines and drugs has been very successful though with some limitations such as the cost of production of live vaccines, and drugs resistance which is a public health concern. The discovery of Eimeria vaccine antigens such as Apical membrane antigens (AMA)-1 and Immune mapped protein (IMP)-1 have introduced the use of recombinant vaccines as alternative control measures against chicken coccidiosis. Although some protections have been reported among recombinant vaccines, improving their protective efficacy has triggered the search for a novel and efficient delivery vehicle. Transgenic Eimeria, which is constructed either through stable or transient transfection is currently being explored as novel delivery vehicle of Eimeria vaccine antigens. Due to partial protections reported in chickens vaccinated with transgenic Eimeria lines expressing different Eimeria antigens, improving protective efficacy becomes imperative. Recent trends in the design of transgenic Eimeria for potential application in the control of chicken coccidiosis are summarized in this review. We conclude that, with improved protective efficacy using multiple vaccine antigens, transgenic Eimeria parasite could fill the gap in the control of chicken coccidiosis as an efficient anticoccidial vaccine.


Assuntos
Galinhas/parasitologia , Coccidiose/veterinária , Eimeria/genética , Vacinas Protozoárias/imunologia , Animais , Coccidiose/prevenção & controle , Organismos Geneticamente Modificados , Doenças das Aves Domésticas/prevenção & controle
4.
J Parasit Dis ; 42(4): 483-493, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30538344

RESUMO

Coccidiosis is a deadly disease that hampers chicken's productivity and welfare. Thus, the disease is a major menace to the global poultry industry. Coccidiosis which is caused by the apicomplexan parasite of the genus Eimeria has seven known species which affect the different parts of the intestinal tract of chickens. The disease which occurs by ingestion of sporulated oocyst has been associated with poor poultry management system. Mixed infection among the species of this parasite contributes to both pathogenicity and misdiagnosis of the disease. A progress in identification and diagnosis approach which cuts across pathological, morphological and molecular has been reported for this parasite. Control measures which include anticoccidial drugs, vaccines and natural products have dominated literature for this disease. However, the emergence of genetic and antigenic diversity with implication on resistance to anticoccidials among different strains of Eimeria parasite has generated concerns on the effectiveness of the current anticoccidial vaccines. A new look on the control strategy therefore becomes imperative. This study reviews the current trends on the identification and control of chicken coccidiosis with focus on (1) Avian coccidiosis (2) Epidemiology of chicken coccidiosis (3) Eimeria parasite and distribution in poultry (4) Diagnosis of Eimeria parasite (5) Control measures of coccidiosis (6) Threats posed by genetic and antigenic diversity of Eimeria parasite on coccidiosis control. Genomic study on diversity of Eimeria parasite becomes imperative for effective vaccine design against coccidiosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...